Keeping Up With Data — Week 25 Reading List

Source: The Master Algorithm by Pedro Domingos

The image above comes from a book by Pedro Domingos. The author argues the ‘Master Algorithm Hypothesis’: All knowledge — past, present, and future — can be derived from data by a single, universal learning algorithm. And calls for a unification effort between all five tribes of ML to come together and create the master algorithm. As a practitioner, I have an advantage of staying out of philosophical differences of the five tribes and rather use the fruits of all their research. But the idea of a master algorithm is certainly very appealing.

Importance of the problem formulation, introduction to an evaluation store and an example of ML supporting human decision makers are on the list this week:

  • Data before models, but problem formulation first: “The way you represent your problem is more important than the choice of ML algorithm you throw at your problem”, says Christoph Molnar. So how to formulate the data science problem for a given business problem, say a churn prevention? The article suggests starting with the end in mind — what do we plan to do with the prediction. How will the model output be used and interpreted? Then we have to choose the right target and finally select the data. (Brian Kent @ TDS)
  • The Only 3 ML Tools You Need: The ML tooling landscape keeps growing. What are the three fundamental tools needed? Feature store; model store; and evaluation store. The first two terms have been around for couple of years, yet they still feel very new to many people. The third one is being introduced by a start-up building such a product. And what is the evaluation store for? Surfacing up the model performance metrics, monitoring data drift and providing a platform for model A/B testing to name a few functionalities. (Aparna Dhinakaran @ TDS)
  • Supporting content decision makers with machine learning: Netflix has so many series and movies available for almost 200M users in over 190 countries. Selection of content is a creative decision. How is ML supporting the decision makers? By providing comparable titles or estimating audience size. The solution is leveraging transfer learning, embedding representations (both for tags and countries), natural language processing (applied to the summary), and supervised learning. Apart from the technical appeal, it’s imho a great example of using ML to augment the powers of human experts. (Netflix Technology Blog @ The Netflix Tech Blog)

A lot of driving ahead of me this weekend as we are going to Prague for a wedding. Covid certificate loaded in my Swiss covid cert app so all ready to go!

Thanks for reading!

Please feel free to share your thoughts or reading tips in the comments.

Follow me on Medium, LinkedIn and Twitter.




Data scientist with corporate, consulting and start-up experience | avid cyclist | amateur pianist | Interim CDO at

Love podcasts or audiobooks? Learn on the go with our new app.

Recommended from Medium

Normalizing Your Prediction Results As a New Norm

Data Mining Team Proof of Value, January 2022

Evolution of Natural Language Processing

Natural Language Processing: Sentiment Analysis and the TextBlob Library


Epidemic simulation based on SIR model in Python

Choosing the number of clusters in KMeans using different methods

Good Night, Little Blue Truck pdf Download

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Adam Votava

Adam Votava

Data scientist with corporate, consulting and start-up experience | avid cyclist | amateur pianist | Interim CDO at

More from Medium

Keeping Up With Data #65

Key Learnings from the Next Generation of Analytics Practitioners

Thoughts on Big Data

Exploring Long Term Musical Trends with Spotify Data